Journal of Organometallic Chemistry, 99 (1975) C55-C58 **o Elsevier Sequoia S-A., Lausanne - Printed in The Netherlands**

Preliminary communication

THE REACTION OF DIIRONENNEACARBONYL WITH 1,2-CYCLO-NONADIENE

JAMES AS. HOWELL*

Chemistry Department, The University, Keele, Staffordshire (Great Britain)[,] **JACK LEWIS, TREVOR W. MATHESON** *University Chemical Laboratory, Lensfield Road, Cambridge (Great Britain)*

and DAVID R. RUSSELL

Chemistry Department, The University, Leicesfer (Great Britain)

(Received August 2Oth, 1975)

SummarY

1,2-Cyclononadiene reacts with Fe, (CO), with dimerization of the allene ligand to give the bis(π -allylene)Fe₂ (CO)₆ complex, which ¹³C and ¹H **NMR studies show to be fluxional.**

Allenes react with iron carbonyls to give products displaying a variety of bonding schemes. Reaction of allene with $Fe₃(CO)₁₂$ results in dimerization **to produce complex I, or, with excess allene, trimerization to produce three** isomeric complexes of composition $C_9H_{12}Fe_2(CO)_6$ [1,2]. If $Fe_2(CO)_9$ is used, then in addition to I, a complex $C_3 H_4 Fe_2(CO)_7$ is obtained [3,4]. The **reaction of 1-phenylallene with** $Fe₃(CO)₁₂$ **gives dimeric products having structures analogous to I [5], whereas tekamethylallene reacts with** $Fe₂(CO)$ ₂ to give a mononuclear $(CH₃)₄C₃ Fe(CO)₄$ complex which exhibits **rapid tautomerism of the Fe(CO), moiety between the two orthogonal a-orbitals of the allene system 161. Recently, the reaction of several macro**cyclic diallenes with $Fe₃(CO)₁₂$ has been reported to occur via an intramolecular cyclization to give bis(π -allylene) complexes of the type II [7].

We have found that the reaction of 1,2-cyclononadiene, the smallest stable cyclic allene, with $Fe₂(CO)$, at 35° C proceeded with dimerization of the allene ligand to give the bis(π -allylene)Fe₂ (CO)₆ complex III (IR (CS₂): **2055,2014,1985,1961 cm-'** ; **mass spectrum: M+ 524).**

Crystals of III, $C_{24}H_{28}Fe_2O_6$ **(mol. wt. 524.2) are orthorhombic, space group P&a, with** *a* **17.78, b 26.52, c 10.03 A, U 4729 A3,** 2 = **8, with a pronounced tendency for multiple t winning. 2926 reflexions with** $\sin \theta / \lambda < 0.7$ Å⁻¹ were measured with an automated Stoe-Weissenberg

^{*}To whom correspondence should be addressed.

diffractometer using Mo- K_{α} radiation and a graphite monochromator. Analysis by conventional methods has yielded the essential details of the molecular structure, but a difference Fourier at $R = 0.12$ has shown the crystal to contain a minor twinned component, and refinement is therefore not yet complete.

The bis(π -allylene) unit is bound in an unsymmetrical fashion with a good C_2 molecular axis bisecting the Fe-Fe and C(5)-C(6) bonds. The distances Fe(1)–C(1) and Fe(2)–C(4) are shorter (av. 2.10 Å) than the Fe(1)–C(2) and Fe(2)–C(3) (2.19) by 4σ , and C(1)–C(5), C(4)–C(6) (av. 1.45(2) A) are systematically shorter than $C(2)$ –C(5) and C(3)–C(6) $(1.39(2)$ Å). The four carbons comprising the *trans*-dienoid unit are much closer to planarity than are the four carbons comprising the trans-dimethyleneethane moiety. Thus the torsion angle $C(2)$ -C(5)-C(6)-C(3) is 12° , whereas the torsion angle $C(1)$ - $C(5)$ - $C(6)$ - $C(4)$ is 38°. The iron-iron bond (2.97 Å) is twisted by 12° relative to the C(5)–C(6) bond. Essentially the same molecular geometry has been found for complex I.

Unsymmetrical bonding of an allyl group in a pseudo- σ , π -olefin fashion is well established crystallographically, and is also apparent from ¹H NMR studies [8]. Room temperature ¹³C and ¹H studies of complex III indicate, however, the equivalence of the outer allyl positions (1-4) and of positions (5,6) respectively. The ¹H NMR spectrum (CD_2Cl_2) consists of a triplet (J 9 Hz) at τ 6.74 due to H(1)-H(4) and a methylene multiplet at τ 7.6-8.7. The undecoupled ¹³C spectrum (CD₂Cl₂, 0.05 M Cr(acac)₃) shows C(1)-C(4) as a doublet $(J 140 \text{ Hz})$ at 66.6 ppm and $C(5)$, $C(6)$ as a singlet at 84.4 ppm. The methylene carbons are observed as two overlapping triplets at 28.7

(J 133 **Hz) and** 34.4 ppm (J 140 **Hz). Two carbonyl resonances in the ratio of l/2 are observed at 211.8 and 215.4 ppm. Localised carbonyl exchange between different sites on the same metal atom is thus not occurring.**

Variable temperature studies showed that the molecule was fluxional. The proton decoupled limiting low temperature ¹³C NMR spectrum $(-85^{\circ}C, Fig.1)$ showed the fast exchange singlet due to $C(1)$ - $C(4)$ as two pairs of lines of **unequal intensity, while the signal due to C(5), C(6) remained unchanged_ The methylene resonances increased in complexity, while the carbonyl resonance of intensity two reformed as two singlets of equal intensity. Analogous temperature-dependent behaviour of the proton resonances H(l)-H(4) was also observed.**

The C_2 symmetry of the crystallographic molecular ground state **requires only two outer allylic signals. We believe that the presence of the two pairs of lines of inequivalent intensity indicates an equilibrium in solution** between the two isomers shown below, involving a rapid *cis-trans* isomeriza**tion which renders the two sets of outer ally1 positions equivalent at room temperature_ Such a process is also consistent with the temperature dependent hehaviour of the carbonyl resonances and the resonance due to** C(5), **C(6).**

To our knowledge, this represents the first example of ally1 flnxionality

of this type. The proposed explanation is not unreasonable, however, in view of the well-documented fluxional behaviour of complexes such as $(C_3 H_5)_2 Zn$ [9] and (C_3H_5) Ti (NMe₂)₃ [10], which possess σ -bonded ground state con**figurations, although an increase in temperature results in C(l)-C(3) inter**change, presumably via $a \pi$ -allyl intermediate.

Further work on this complex and other related complexes is continuing. We thank the S.R.C. for support.

References

- **1 S. Otsuka. k Nakamura and K. Tani. J. Chem. Sot. (A). (1971)** *1.54.*
- 2 A. Nakamura, P.J. Kim and N. Hagihara, J. Organometal Chem , 3 (1965) 7.
- **3 R Ben-Shoshan and R. Pettit. Chem. Commua. (1968) 247.**
- **4 R-F. Davis. Chem. Commun.., (1968) 248.**
- **5 A. Nakamura, S. Otsuka and K. Tani, J Chem. Sot. (A). (1968) 2248.**
- **6 R. Ben-Shoshan and R. Pettit. J. Amer. Chem. Sot.. 89 (1967) 2231.**
- 7 R.B. King and C.A. Harmon, J. Organometal. Chem., 86 (1975) 239.
- **8 J. PoweII and B.L. Shaw. J. Chem. Sot. (A). (1967) 1839 and ref. therein_**
- 9 G. Wilke, B. Bogdanovich, P. Hardt, P. Heimbach, W. Keim, M. Kroner, W. Oberkirch, K. Tanaka,
- **E. Steinrucke. D. Walter and H. Zimmermann. Angew. Chem. Int. Ed. Engl.. 5 (1966) 151.**
- **10 H.J. Neese and** *H.* **Burger. J. Organometal. Chem.. 32 (19713 213.**